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ABSTRACT

We derive the asymptotic distributions of the sample mean,

autocovariances and autocorrelations for a time series whose autocovariance

function y has the power-law decay Yk Xk - , X > 0, 0 < a < 1, as
k0

k + -. The results differ in many respects from the corresponding results for

short-memory processes, whose autocovariance functions are absolutely - -

summable. For long-memory processes the variances of the sample mean, and of

the sample autocovariances and autocorrelations for 0 < a 0 /2 , are not of

order n-1  asymptotically. When 0 < a <1/2 the asymptotic distribution of

the sample autocovariances and autocorrelations is not Normal.
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SIGNIFICANCE AND EXPLANATION

Persistence, or long memory, is the presence in a time series of

significant dependence between observations a long time span apart. Correct

identification of long memory in an observed time series can greatly improve

the accuracy of long-range forecasts of the series, and can give a better

.-understanding of the physical processes which generate the observed series.

The long-memory phenomenon has been observed by researchers in a number of

areas of application including economics, geophysics, hydrology and

meterology.-\

Identification of long memory in an observed time series yl,...,yn is

often based on the failure of the sample autocorrelations

n-k

rk ck/cO, ck = n 1  ) (yt Y)(Yt+k -), k = 0,1,2,...,n I 
t= 1

where y = (Y1 + "'" + Yn)/n is the sample mean, to die away rapidly to zero

as k increases. Because rk is a random quantity its probability

distribution must be known before accurate inferences may be drawn concerning

it. 'This report derives the distributions of the sample autocorrelations and

related quantities when the sample size n is large, thereby facilitating the

-*: diagnosis of long memory in an observed time series. "

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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ASYMPTOTIC DISTRIBUTIONS OF THE SAMPLE MEAN, AUTOCOVARIANCES
AND AUTOCORRELATIONS OF LONG-MEMORY TIME SEPIES

J. R. M. Hosking*

1. INTRODUCTION

Let {y: t e Z} be a second-order stationary time series with mean Eyt = W and

autocovariance function Yk = E{(yt - )(Ytk - ) We say that {yt } has short memory

or long memory according as to whether Iyk1 is convergent or divergent. Most of the

theory and practice of the analysis of stationary time series is concerned with short-

memory series, but the use of long-memory models has been considered by a number of

authors, for example Mandelbrot and Wallis (1969), Granger (1980), Granger and Joyeux

(1980), Hosking (1981, 1984), Jonas (1981), Janacek (1982), Geweke and Porter-Hudak (1983)

and Li and McLeod (1984). The models considered by these authors mostly have

autocovariance functions which satisfy

-a Aka, X > 0, 0 < a < 1, as k + * (1)

In this report we consider the large-sample properties - mean, variance and asymptotic

distribution - of the sample mean, autocovariances and autocorrelations of long-memory time

series. For a time series with an autocovariance function of the form (1) and a Normal 0

marginal distribution, our results are complete and are summarized in Table 1.

Most of the results in Table I - perhaps all of them - are valid under wider

conditions than Normality of the time series. In our proofs we shall typically assume that

{y I has the representation
t

yt - j + atj (2)
j=0

where

j V > 0, 1/2 < < ( 1, as j + (3)

*Institute of Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxon OXIO BBB, 0
England

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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TABLE 1. Asymptotic bias, variance and distribution of sample statistics for a
Normal time series with autocovariance function (1): n is sample size.

order of magnitude of: Asymptotic
Statistic Range of a bias variance Distribution

mean 0 < a < 1 0 n-C Normal

autocovariances 0 < a <1/ n "modified Rosenblatt": cumulants

I defined by (13)-(16) below

and i a =1'/2 na n- log n Normal

*autocorrelations 1/2 < a < 1 n- n- Normal

and [at : t e Z) is a white-noise process consisting of independent and identically

distributed random variables whose distribution we shall require to satisfy any of the

following conditions:

2 2
Ea~ t <~ (4a)

4 4
Ea = a (3 + ic) < (4b)

Earn < for all positive integers m ;(4c)

2
at N(O,G (4d)

Some of our assumptions are unnecessarily restrictive but are imposed for convenience of

presentation; some relaxations of them are considered in Section 7. When (2) and (4a)

hold, (1) is a consequence of (3), as we now demonstrate.0

Lemma 1.

Suppose that the time series {y t satisfies (2), (3) and (4a). Then the

autocovariance function y kof (y Isatisfies (1), with a =2$ - 1 and

2 v2

Proof. let TV vr(j+1-a)/r(j+l), j =0,1,2........Then (TV.) is a bounded positive

decreasing sequence and TV - -4' as j + -. Thus

M 1 there exists C > 0 s.t. 1 4'. Cl'., j = 0,1,2,..

(ii) V E > 0 there exists 3 s.t. j > j (I -Cyr'. < ' < (I + CPV..

-2-



From (2) and (4a) we have Yk = 2 i jj+k" Now
j=0

a2 a 2 2 r(1-8)r(k+1-0) 1 r(j+l-s) r(j+k+1-0) r(k+1)

k j+k ruc+u j (j+1) r(I-6) (k+1-0) r(j+k+1)

a 2 2V2 r(1-8)r(k+1-0) F(-8, k+1-8; k+1; 1)
r(k +1)

2 2 r(20-1)r(1-s) r(k+1-0)a V r(s) r(k+B)

SV r(2-1)r(-) k2B-1 as k

here F(a,8rv,x) is the hypergeometric function. Thus for all C > 0 we have

J-1 J-1
Ik2 8-'( ''I - rkfl ( a2k2S-1{IjXo ') 'jj+kl + jo'  JJk* = jjk- j- jj I} .

I22k1jc 2B- I)oY r )142k2k28-1(2 + E)} k".
k 'ijk j+ I J~k "J'P'+k I T. ~J%+k'}

=0j=0 j=3 JjJ

2 28-1 2 2 28-1 2
4 a k J(C + 1)Y TV + a k (2c + e ) 'VY.

0 k j J+kj=J

This expression can be bounded by a constant multiple of c for k sufficiently large,

since the first term is O(k 20Y- ) = O(k - ) + 0 as k + - and the second term is

bounded by (2C + C2)k 2-1r k  with k2 -r k  being bounded in k. Thus Yk - rk as

k + and the result follows.

The converse of Lemma 1 is not true. For example if (2) and (4a) hold and 4j = 0

if j = 2m for some positive integer m, 1j j-0 otherwise, then it is easy to show

that (1) is still true.

An outline of this report is as follows. In Sections 2, 3 and 4 we derive the

asymptotic properties of the sample mean, autocovariances and autocorrelations

respectively. The cumulants of two non-Normal distributions arising from the asymptotic

theory of Sections 3 and 4 are investigated in Section 5. In Section 6 we apply our

results to the family of fractionally differenced ARIMA(p,d,q) processes, a particularly

widely known class of lonc-memory time series. Section 7 contains some indications of

possible extensions of our results.

-3-
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2. THE SAMPLE M~EAN

-1he sample mean of a realization t = t 1,...,nl of a time series is

n

t= 1

and has mean ti and variance

n n 2 n

var n n
2  

\ = - n 2 ) (n -t)'Yt + ny 0 I.(5)
t= 1 t

Lemma 2

Let ft t =1..,nl be a sample from a second-order stationary time series whose

covariance function Yk satisfies (1). Then

var y as n .
1-a) (2-a)

Proof. write (5) as

var y 2n-n 1 nY + n Y
n t 0t=1

As n * the sum n-
1 

'(1-t/n)n Y converges to the integral
t

f(1 - )t-d I /f( a )(2 -x~

00

Since n =C o(n )as n + the result follows.

* Theorem 1.

Suppose that the time series ly satisfies (l)-(3) and (4a). Then

n (y - ii) -- )> N(0,21/f(1 - nx)(2 - o)W) as n +

____oj (1+r0/22

Proof. Since )~ with at > 0, we have 4'. < Furthermore, from

Lemma 2,0

-4-



)2 2An 2

yj _ *t (2Q as n
t- 1

The result now follows from Theorem 1S.6.5 of Ibragimov and Linnik (1971).

Note. The proof of their Theorem 18.6.5 qiven by Ibraqimov and Linnik (1971) is defective,

but can easily be corrected, as indicated in the Appendix to this report.

Remark. Theorem I is also valid if (y ) satisfies (2) and (4a) and has an autocovariancet

function Y with 'Y< Y )Xk X) < 0, 1 < a < 2. The proof is unaltered.

k. 00



* 3. SAMPLE AUTOCOVARIANCES

We define the sample autocovariances of a realization {yt t = 1,...,n} of a time

series by

n-k
Ck n ( Cy y - y), k = 0,1,...,n 1
k  t t+kt=l 1'

Other definitions of sample autocovariance have been used by some authors, but the more

common variants, for example those defined by Anderson (1971, chapter 8), differ from ck

by quantities of stochastic order Op(n - ) and have asymptotic properties identica, to

those of ck. We also define

1 n-k
c k= n I (Yt - U)(y - 1j), k = 0,1,...,n - 1

t=1

these quantities are estimators of yk when the sample mean is known. For short-memory

processes the asymptotic distributions of ck and ck are identical. For long-memory

processes with autocovariance function (1) this is only true if 1/2 < a < 1. When

0 < a < 1/2, replacement of u by has an effect which is not negligible even in large

samples, for it introduces a bias into the estimated autocovariances which is of the same

order of magnitude as their standard deviation.

* Theorem 2.

Let {y t be a stationary time series satisfying (1). Then the asymptotic bias of

* ck is given by

-2Xn a 6ECk - k (1 - z)(2 - as n + . (6)

If in addition [y satisfies (2), (3) and (4b), then the asymptotic covariance of the
t

ck is given by

2 2K2n-2a if 0 < <2 , (7a)

cov(ck,c) 4Xn1og n if = 1/2 (7b)

n- (Y s 'ss+-t + s + ''kAt} if 1/2 < a < 1 • (7c)

where K2 is as defined in Theorem 3 below.

-6-
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Proof. To find the bias of ck we write

- 2 -1- k k
c= Ck - (1 + k/n)(y - U) + n (y - u)O (y - u) + ) (Yn-t+1 - (8)

t=1 t t=1

The first term on the right side of (8) has expectation Yk + O(n-), the second term is

of order 0 (n- ) and has expectation -2Xn -/(1 - a)(2 - a)l + o(n- ) by Lemma 2, and
p

the third term is of order 0 (n )and is asymptotically negligible. Hlence we deduce--
p

(6).

To establish (7) we consider the cases 0 < a < 1/2 = 1/2 and 1/2 < a < 1

separately.

First suppose 0 < a < 1/2 . The covariance of ck  and c, is given, apart from terms

of order n- 1 , by Anderson (1971, p. 452, equation (65)). The expression involves terms

arising from the variance and kurtosis of fa 1. The variance terms are the same as if
t

[a t I were Normally distributed and sum to 212K 2n
-  asymptotically, as shown in Theorem

3 below. To prove (7a) we must show that the kurtosis terms make an asymptotically

negligible contribution to cov(ck,c.). These terms are

Kn 1 n,~- )' Y 4V I, t

t=1 U-- i=O i i+k i+u-t i+t+u-t V-1 i0 i i+k i+u-t i+f.+v-t

(9)
1 n 2n-2- n 4is ,+f' u t 4k u~ + n Y' )' ds~, vd v, _, 0

si i0 t it,+ i+ut i+k+u-s +n S1 v- i i+k+u-s i+u-t i+I+v-t

where ,lj = 0 for j < 0. Now since v' - AJ as j + - we have 1 j( j for all

integers j, where ". = 0 if j < 0, W= C, Vj = Cj if j ) 1, and C > 0 is a

constant. Note that j : j ) 01 is a positive decreasing sequence. Thus

-7-
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n-2 .2 2-

L i i+ i +ut+kku- +i u-t' L i i i -
t=1 u=1 i=O t=1 u=1 i=O i i+J< i+u-t i+t+u-t

i i.-2n.+ + . ' +
1 ni i+k i+ j i i+k i+u-t Ti+ +u-t Ti+t-u i+k+t-u Ii Ti+ Xi

1 t<u i t>u i t
-222

-2 i i i+It-uI-
t u i

n n
-2 ~ 4)1/2( ,4
n . 1 i i+t ul) by Cauchy's inequality

t=1 u=1 i=O i=0

- n
n 4 

+ 2n -
2( 41/2 n 4 )1/2

i=0 i=O 1 i0 +t

Now - 4
6 = O(t

1-4 6 ) and
o O(i ' i sogt .i+t

i=0 i=0

.n -tg t
= n t - tgt =O(n 

5/ 2 -2 0 )

t=1 '

Thus the first term of (9) is O(n = O(n o(n-22) A similar argument shows

that the other terms of (9) are O(n 1 2 -) also. For example for the second term we

write

3 l iikiuti+v I n-,l  + +:.
n *ii~k ~u- i~xv-ti i+k i+u-t i+z+v-t

t u v i t u v i

n-3 [ [ 1 (2 
2  

)1/2(u 2 
1/2  

(Cauchy's inequality) St- u V i i+k i+u-t ii i+k i £ v-t ° .
t Uv i i

n _u

t=1 u=I

1/4-
where ht = O(t 1/ 4  as t -, whence an argument like the above shows that this term

too is of order O(n 1
/2 - 2  

Thus (9) as a whole is of order o(n
-2 c 

) and this proves

(7a&.

N×xt suppose a 1/2. First we consider cov(ck ,c): we have (cf. Anderson, 1971,

p. 4,1

-8-
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cov(c koc - 2 ('yt-u Y t-u+jk-t + Y t-u+kyt-u-I
t-1 u-i

(10)

+ KC 7 *iikiutiXut

i.0

The terms involving y in (10) yield

n-k n-1
n t I (Yt-u Yt-u+k-A t-u+k Yt-u-9.

-2n 
n

n t (Y t-u Yt-u+k-I + Y t-u ' Y )-- as n*

- (Y GO'k-1 + Y i + n- (Y t-u 't-u+k-9 + Y t-u+kyt-u-LI
t u

-(Y Yk + Y + 2n 2  (n -t)(2~ ~t) (11)
t-1

since y k Ak as k * .Asymptotically the dominant term in (11) is

4X2 n-I It- 4X 2 n- log nj the other terms are asymptotically negligible. The identical

argument to that used in the case 0 < a 41/ above shows that the kurtosis term in (10)

is 0(n-1) -o(n- log n), so we have proved that

- 2 -1
cov(c kvc) it 4X n log n as n + (12)

and hence that ck is of stochastic order n-1 /2 (log n)1 . Now from (8) it follows that

c k -k . p ( 1 /2 ) because by Lemma 2 Pj )2 
= 0(n 11 ) Thus replacement of c k

by ck has an asymptotically negligible effect and (7b) follows from (12). 0

Finally when 1/2 < a <C 1, the sum of squared autocovariances, yk is convergent.

Thus the spectrum of the process is square-integrable and (7c) follows from the central.-

limit theorem of Hannan (1976).

-9-
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Theorem 3

Let hy t be a time series satisfying (M)-(3).

WCi) f 0 < a<1/2 and (4d) holds, let C, - n (c k Y then as n +

Ck - C -R> 0 for k X . and the common limiting distribution of the Ck has rth

cumulant

K r2r-1 (r - 1)K (13)
r r

where

K = -2/{1 - a)(2 - a)) , (14)

1 1

Kr = ."*.f g(xlx 2 )g(x2,x3 )'...g(xr- 1,xr)g(xrXl)dxl...dxr, r 0 2 , (15)
0 0

with

(x,y) = ix - YI - {x + (1-x) 
1 - + y 1 + (1-y) 1-}/(l-) + 2/{(1-.)(2-u)} • (16)

(ii) If a =1/2 and (4d) holds, let Ck = (n/log n)1 /2 (ck - yk )' then as n * -,

Ck - C 2> 0 for k * £ and the common limiting distribution of the Ck is N(0,4X2). .-

(iii) If 1/2 < < 1 and (4b) holds, let Ck = n1 2  - Yk); then as n + any

finite subset of the Ck has a limiting distribution which is multivariate Normal with

mean zero and covariances given by (7c).

Remark. Rosenblatt (1979) proved the corresponding result to Theorem 3(i) for the

asymptotic distribution of the autocovariances ck calculated assuming the mean M to be.

known. The limiting distribution is the same as that defined by (13)-(16) except that the

function g(x,y) is replaced by g(x,y) = -y . These distributions are further

discussed in Section 5.*o
Proof. ( We adapt Rosenblatt's (1979) proof of his proposition to the case in which the

sample mean is estimated. write z Yt - so that

ck n -k (n) (n)
n zt Zt+ k

-10-
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For ~ ~ ~ ~ ~ n fieZn h vco))- ~ "~T has a degenerate multivariate Normal

distribution with mean zero and covariance matrix fl - (w at ) where

- n n n + 2 n

and rank Q2 n - 1. The joint characteristic function of Ck, k - 0,,.,,can be

written as 11- 21LTALI-11 2  where Ql LLT, L is an n x (ni 1) matrix of full

column rank (Searle, 1971, p. 68), and

kS
A n )t 3kJ

k-O
where

[01 0O... 0

For r )2, a typical rth-order cross-cumulant of this distribution looks like

2r-1 ( )ar-r

il-i jr=I j 1  1 VJ2 J2  2 PJ3  ~ r-1 r-1'jr ~r r'J1

where r take on values 0,,.,. As n + all theme rth order terms have the

same limit, this limit being (15) with

g(x,y) I x -yl- f Ix -* du -f ly -y d + f f 1.- vj-dudv .(17)

0 0 0 0

It is trivial to show that (16) and (17) are equivalent. That ECk + KI olo.fo

Theorem 2. To complete the proof we must show that the cumulants (13)-(16) define a unique

distribution. We have by Cauchy's inequality for integrals that



K2  g 1 1q(x 2'x (x gr2 r1 (x 2r' dx 1 ) I..dx i2r

0 0

and similarly that

IK r-1 /2 f 1 r 2 (x1 I ,x)g 2 (x2 ,x )dx dx dx3

Noting that g(x,y) - I Iais bounded for 0 <x < 1, 0 <y( 1 we can use

Rosenblatt's (1979) equation (19) to show that for some constant C, IKrj 4 CK r/2  for

all r. Thus the joint characteristic function of C0 ,C1 ,... ,Ct is analytic in a

neighbourhood of the origin and the distribution defined by (13)-(16) is unique.

(ii) When a = 1/2 the statistics ck and Ckare asymptotically equivalent, as

shown in the proof of Theorem 2, so to prove Theorem 3(11) it is sufficient to establish

the asymptotic joint Normality of C, (n/log n) 1/2 -k01. ,9 By

following the approach of Rosenblatt (1979, p. 127) we see that a typical rth cross-

*cumulant of the joint distribution of C0,...,C 9  looks like

Ur 2 r-1 (r -1)1(n log n)r/ Y n ( r (

j =1 j =1 3l 1 z2) 2  2-3 . jr-1+frl1jr+ r-rJ1 r

where all ... In rtake on values 0,,..~.We will show that for r )3 these cumulants

tend to zero as n + -. We take a, Q. ~ = 0 for convenience but our proof is also

* valid, with minor modifications, when the a. are not all zero. By Cauchy's inequality we -

* have

lurl < 2rl(r-l)!(n log n)r/ Y 3. IV y
. . . . . . . . . . . . . . . . . . . y. I 1

j1=1 jr=1 1lj2 i 2-3 J 3- 4 jr-l13 r

-12-



0,0

Now Y o(J1 / 2 ) as j + a, so for I < j 4 n

n J-1 n-j

l' i-. I YO + * Ii + i !vil .i-1 i-I i-I. :i
(19) J

< Cf1 + 11/2 + (n-J) 
1/2) 3Cn1/2 0(nl/2

for some constant C > 0, since i 1/ 2 = 0(jl/2), similarly

)' Yi + y +'Y2

i.I 0 .1 i- i
(20)

4 C'(1 + log j + log(n-j)l 4 3C'log n = O(log n)

for some constant C' > 0, since ' i- = O(log J). Summing (18) over Jl' ' Jr
Lii

successively and using (19) and (20) we have

Ur = (n log n)r/
2 

" O(log n) * O(n(r
2 )/2 ).n 

= 0((log n)l
- r/2)

nd so ur  0 for r 3 3. Thus the C, and by asymptotic equivalence the Ck also,

are asymptotically jointly Normal and Theorem 3(11) follows, the variance of the limiting

Normal distribution of Ck being obtained from Theorem 2.

(iii) When 1/2 < a ( , (Yt I satisfies the conditions of the central limit theorem

of Hannan (1976), as remarked in the proof of Theorem 2 above, and Theorem 3(iii) follows

in consequence.

--13-
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4.* SAMPLE AUTOCORflELATIONS

The autocorrelations of the time series (y)are the quantities Pk /YO, and

are estimated from an observed series (y t =1,...,n) by the sample autocorrelations

t

n-k n - -
rk= . (y -y)(y~~ -Y) (y Y Ck/O

k t tt1 t.1tl/c

AS with the sample autocovariances, a number of asymptotically equivalent variants of rk

may be defined. The asymptotic properties of sample autocorrelations are qualitatively

similar to those of sample autocovariances. For long-memory time series with

autocovariance function (1), the same trichotomy as in Section 3 applies: for

1/2 < 0 < 1, rk has the "standard asymptotic behaviour" of asymptotic Normality and

variance of order n-1 for a -1/, rk is asymptotically Normal but with variance of

-2a
order n-11og n; and for 0 < a <1/, rk has variance of order n- and an asymptotic

distribution which is not Normal.

Theorem 4

Let {y be a time series satisfying (1)-(3) and (4b). Then the asymptotic bias and

covariance of the rk, k > 1, are given by

-2(1 p k ~ -
-n as n +

2(X/Y ) 2 (1 Pk)(1 PI) -2a if 0 < a </2(21a)

2 -
covtr k' r it 4(X/Y 0 )(1 -

0k M( -Pt)n log n if a /2, (21ib)

n ~ ~~~~ (PsP9kL+p s+k+t + 4 P k P Ipe 2p k0 ps+P. -ptp s+k)1 (21c)

if 1/2< < 1

where K2 is as defined in Theorem 3.

-14-



Proof. Write rk - - (c k - ok c0)/Co. The results then follow from Taylor expansion of

the c k about their expectations Yk' using Theorem 2 above and the techniques of Fuller

(1976, Section 5.4).

Theorem 5

Let f Ibe a time series sstisfying (1)-(3).

Mi If 0 < a< 1/2 and (4d) holds, let Rk - ncl(r k 0 k/( - ok ) then as n4 ~

Rk - F, -2> 0 for k * f. and the common limiting distribution of the Rk has rthA

cumulant Y 0rCr where ic r is defined by (13)-(16).

(ii) If a =1/2 and (4d) holds, let Rk - (n/log n) 1/2 (rk - ak )/(I - k )i then as

n 4 Rk - Rf->0 for k t 9 and the common limiting distribution of the Rk is

N(0,4V0/v 20.

(iii) if 1/2 < a < 1 and (4a) holds, let Rk - n"2 (rk - O ithen as n -any

finite subset of the Rk, k > 1, has a limiting distribution which is multivariate Normal

with mean zero and covariances given by (21c).

Proof. First suppose that 0 < a <V12 . Writing rk - QC Y(k P (CO Y P)/C0

we have

=k C 0(C~ k-k 0 MI/( - 0k) (22)

where Ck, C0 are as defined in Theorem 3Mi. From that theorem it follows that

Ck - OkCO has the samte limiting distribution as (I k o)C 0 and this together with the

result that cO + T0  almost surely (Hannan and Heyde, 1972) implies that Rk has a0

limiting distribution which is identical to that of Y0 C and hence has rth cumulant

0. or r weeK r isdefined b'y (13)-(16). rom (22) we also have

* ~~~Rk R 
1 (

Sand since Ck CO -2> 0, C~ C -R> 0 and co - almost surely this implies that
00

Rk - Rt->0. This completes the proof of Mi.

The proof of (ii) is almost identical to that of i): only the limiting distribution

of Co is different.

TO prove (iii) we note that j /22=Oj /22) and that 2A<-. Tu

rjl/2t1 < -and (iii) follows from Theorem 3 of Hannan and Heyde (1972).
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5. CUMULANTS OF NON-NORMAL ASYMPTOTrIC DISTRIBUTIONS OF SAMPLE AUTOCOVARIANCES AND

AUTOCORRELATIONS

The non-Normal asymptotic distribution of sample autocovariances and autocorrelations,

* derived in Theorems 3(i) and 5(i) above, is similar to the limiting distribution of

n (Z k - for a process satisfying (1) with 0 < a <1/2, obtained by Rosenblatt

(1979). Rosenblatt's distribution has rth cumulant

rr
r r

where

* 11=0,(24a)

I r * .. f j 1 - x! x 2 I-1X2 . Ix r- x -a ix r x I dx ... .dx r' r >2 . (24b)

r 0 0 2 -

It is of interest to evaluate some of the lower cumulants of this distribution and of its

* modified version with cumulants defined by (13)-(16), in order to see how far from Normal

these distributions are. The following theorem gives some analytic expressions for the

integrals which define these cumulants.

Theorem 6.

Let I r be defined by (24) above and Kr by (14)-(16) above. Let

i r1 f.. f x1 x 2 1!"'x 2  x 3 1... 1xr.1 xr i cl-'Xr ,r =1,2,...

0 00

*i.e. J r-1 is similar to Ir but with the term Ix r -x 11- omitted from the

integrand. Then

12 = /1~)12)

*13 - 4r2 (1-a)/((2-3a)r(3-2a)}

3 26r (1-00) 1 F Lla12-2C 2r -"(2-2ax a, a,~i(5
1 4 (3-4a)r(4-3a)' (1a

3
(- 3 F2 2-ci,3-2a + 3 3 F2 12Z,2-,a 25

(I-C0 3-4a)(1-0) r(4-4a)

K 2  1 2~ 2J2 + J1 (26)

-16-



K3=13 33M3 + -J JI (27)

4 " 14 - 44 + 43 + 2J2 - + + (28)

J1 = 2/{(1-C)(2-)},

-22
- 2r2(1-G)/114-2a) + 2/{(1-C) (3-200)

2r_(1") + 4r (-0a) + 2 F [I-,13-2a]

3= (5-3a) (1-a0(4-3a)F(3-2a) 13321 3 2 2-a,4-2a

(1-a) 4r3(1-a) + a) (-a) r~-.-a

4 r (6-4a) (1-a)(5-4alr14-3a) +1.a 2 (4.3alr(3_2a) 3 2 L3-2a 5-3a

4 12r(1-a)r(3-3) 2 1,,3-2a
3 (1-a)(3-2a) r(6-4a) 3F 2-a,4-2a

-(0a) (3-2a)(5-4a)32

+ 3 1 tlaF( 1, a 2.--at) F(a-1,4-3a; 5-3a;t) dt

(1-a) (4-3a) 0

I+8r(1-a)r(2-2a ) f. tI-CLF(1,cL;2_ lt)F(a-l,3_2ai5_3atit)dt i ...

(-a)r(5-3a) 0

here F(a,l iyx) is the hypergeometric function and

r1,ao] r o)r(6) r(j+a)r(j+p)
3 2 r(aor(:) r(j+y)r(j+6)

3J.0

is a generalized hypergeometric function of unit argument (Bailey, 1935).

Proof. The proof, which is tedious but not difficult, is not given in detail. To prove

(26)-(28) we substitute g(z,y) from (17) in (15); the resulting expressions for

r - 2,3 and 4 simplify to (26)-(28) respectively. To evaluate the integrals for Ir

and 3 r we break the region of integration into sections of the form

0 < Xi < ... < xi < I for il,...ir a permutation of 1,...,r, and within each
r

sction integrate over x ...,x in some convenient order. For each integration we
1 r

transform the dummy variable so that the range of integration is (0,I) and use the

expressions

-17-
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1

f t a1 (1 - t lB -ld t -B(a ,B 1) r (a r (B /r (a , + B ) _

f t 1( -(I(1 - xt) Ydt -B(a,B)F(a,y ca + BIx) ,

0

f tal(1 - t)B lF(y,6;,ct)dt * B(a,0) 3F2 [+ogYC
0 3

(Gradshteyn and Ryzhik, 1980, pp. 284, 286, 849). As an example of the method we prove

(25). We have

14 - f f f f Ix1 - 2 x2 - x3 1"'1 - x4 1-alx 4 - x1 ldxIdx 2dx3dx40 0 0 0 
-

and using the symmetry of the integrand under the cyclic transformation

x I + x2 + x3 + 4 + x I we can break up the integral as

1 4 8 f +8 1 +8 (29)
[0,1 x x>x x 4  x >x2 >x 3  xI >x3>x2 >x4

For the first term we perform the successive integrations

f (x 1 - a - x3  dx2  (x 1 - x 3 1"2(I 3-2 ,- a.
x3

1-)
2 a~x x 2-3*

fxf (x1  3 - x 4 )dx 3 - ( x4 ) -B(1.-,2-2a)

1 4

Sf (x 1 - x4 ) o dx dxl - 1/013-40)(4-4a)}

0 0

thus the first term of (29) is 8B(l-a,1-a)B(1-u,2-2a)/{(3-4a)(4-4G)), which simplifies to

the first term of (25). The second term of (29), after the integrations

-18-

4 0 1

•_ .. . . . . o ", .



. .. ,~,

~f (xI  x2) (x2 - x ) dx2 .x4

" 
.i

14

(x - x4) 1 -ax - x )la(1 - 1 
1F( 12 -a;(x -x )/(x -x 311 "i

1 4 4 3 4 1 4 3

- (x - x) 1a 1  - 3 )a(I -c~)~F(at,l a12 a(x~ - 1 )/(x -3)

where we have used 9.131.1 of Gradshteyn and Ryzhik (1980, p. 1043),

x I

1-2a -a
" (x x) x - x 3)- F(a,1 - a;2 - a;(x 1 - x4 )/(x - x3 ))dx 4

x3

(x - x23a f (1 - t)-2aF(a#,1 - *;2 - a1 - t)dt

13a

, 0

( x3 2-3a B(1 a,2 2a) F ral-a,2-2q]
1 3 2 2-a,3-3a

and

1 X 1
xf (xI  ) 2-4 dx 1 /(3 - 4a)(4 - 4n)"

00 1 3 31

yields

SB(1-a,2-2t) F [a,l-a,2-2ctj
(1-a)(3-4a)(4-4a) 3 2 2-n,3-3et

which reduces to the last term of (25) after the application of a transformation of the

3F2 function given by Bailey (1935, p. 98). Similarly the last term of (29), after

integrations over 2,3,4 and x, successively, yields the second term on the right

side of (25). This completes the proof.

We have used Theorem 6 to evaluate the cumlants up to fourth order of the Rosenblatt

and "modified Rosenblatt" distributions, whose cumulante r and Kr are defined by (23)-

(24) and (16)-(19) respectively. The results are presented in Table 2 for ) - 1 and

various values of a in the range 0 < a 1/2. The values 12, 13 and 14 have also

* -19-
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been calculated by Mandelbrot and Taqqu (1979) using a less accurate meth06. It can be

seen that the modified distribution is closer to Normal than the original Rosenblatt

distribution, and that both distributions approach Normality as (1+ 1/2. It is also

apparent from Table 2 that the mean of the modified Rosenblatt distribution greatly exceeds

the standard deviation in absolute value if a < 0.3. Thus for a time series with an

autocovariance function (1) and a < 0.3, the vast majority of realizations of the series

will have a sample autocorrelation function which even for large samples significantly . -.

underestimates the true autocorrelation function of the time series. The use of the sample

autocorrelation function to identify such processes may therefore be very unreliable.

Table 2. Standardized cumulants of the Rosenblatt and modified Rosenblatt distributions.

Cumulants defined by (23)-(24) and (16)-(19) respectively, with X = 1.

skewness K IK 3/2, kurtosis = w 2 _3/2 4/2

a 0.02 0.10 0.20 0.30 0.40 0.48

Rosenblatt distribution

Mean 0.00 0.00 0.00 0.00 0.00 0.00
Std. dev. 1.46 1.67 2.04 2.67 4.08 9.81
Skewness 2.83 2.77 2.55 2.07 1.18 0.17 S
Kurtosis 11.99 11.66 10.35 7.63 3.39 0.23

Modified Rosenblatt distribution

Mean -1.03 -1.17 -1.39 -1.68 -2.08 -2.53
Std. dev. 0.032 0.20 0.55 1.21 2.82 9.12 0
Skewness 1.37 1.20 0.95 0.67 0.33 0.04
Kurtosis 3.53 2.85 1.94 1.08 0.35 0.02

-20-
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6. FRACTIONALLY DIFFERENCED ARMA PROCESSES

Recent interest in long-memory time-series models has been particularly stimulated by

the family of ARIMA(p,d,q) processes in which the differencing parameter d is permitted

to be any real number. These processes have been discussed by Granger (1980), Granger and

Joyeux (1980), Hosking (1981, 1984), Ceweke and Porter-Hudak (1983) and Li and McLeod

(1984). It is therefore of interest to apply our previous results to this class of

processes.

A time series {yt} is an ARIMA(p,d,q) process if it can be written as

#(B)Vd(y t - u) - e(B)at  (30)

where v is the mean of the process, Vd is the fractional differencing operator

(Hooking, 1981, equation (2.1)), #(B) - - - ... - * BP  
and

e(B) - 1 - 9 - - e B9 are polynomials of degree p and q respectively in theq

backward-shift operator B defined by Byt - yt-1' and {a is a white-noise process
t

consisting of independent and identically distributed random variates with mean zero and

2
variance 0 An ARIMA(p,d,q) process is stationary if d <1/2 and all the roots of the

equation #(z" ) - 0 lie inside the unit circle jzj - I (Hosking, 1981). It is

straightforward to show, using the approach of Theorem 2 of Hooking (1981), that a

stationary ARIMA(p,d,q) process with d * 0 has an autocovariance function which satisfies

a2f (0)r(1 - 2d) -d-1
u k 2d-1ask(1

yk r(d)r(1 - d) as k * , (31)

and an infinite movinq-average representation (2) with

{f (0)11/2
~ r(d) j as j +

here

f - (1 - - ... - e )2/(1 " -" " )2 (32)

is the spectral density at frequency zero of the process ()u t = e(a t, the "ARMA part"

of the ARIMA(p,d,q) model. We see that for 0 < d < 1/2 the ARIMA(p,d,q) processes are

-21-
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stationary long-memory processes whose autocovariance functions have the power-law decay

(1) with exponent a I 1 - 2d. Thus Theorems 1-5 above are valid for ARIMA(p,d,q)

processes.

Hosking (1981) suggests that the range of values -1/24 d <1/2 may be of particular

interest when using fractionally differenced AF44A processes for time series modelling. We

can without difficulty extend Theorems 1-5 to cover the range -1/24 d 4 0. Indeed the

results stated in Theorems 2-5 for the case 1/2< a < I apply also the the case a > 1,

or d 4 0 in (30), since the relevant conditions of Hannan and Heyde (1972) and Hannan

(1976) still apply when C ) 1. The equivalent of Theorem I for the case -1/24 d < 1/2 in

(30) is given below. S

Theorem 7

Let lyt be a stationary ARIMA(p,d,q) process (30) with 1/2< d <1/2. Define
t

fu(0) as in (32) above.

i) If -1/2< /2, then n/2-d- - N(0,w ) as n , where

2
a f (o)r(1-2d)2 u

= (1+2d)r(1+d)r(1-d)

(ii) If d -I/ , then n(log n) (y 1/2 - 1 N(0,62), where 6 = 2I 02
f (0).

Proof. i) For d = 0 this is a standard result (Anderson, 1971, Theorem 7.7.8). The

results for 0 < d <1/2 and -1/2 < d < 0 follow respectively from Theorem 1 and the Remark

thereto.

(ii) Now let d = 1/2 and suppose first that p = q = 0. Then {y t has variance S

Y0 = 4I and correlation function pk - -1/(4k2 - 1) (Hosking, 1981). We write (5) as

n-1 k
var y n 0, Pk"

k=0 -- k O

By induction we can show that

k
I p1 - 1/(2k + 1) ,
j=-k 

•
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dl 0

bj 
.

- -2
4whence it follows that var y n-y 0 1/21og n as n + . It is now straightforward to

verify that {yt} satisfies the conditions of Theorem 18.6.5 of Ibragimov and Linnik

(1971) and thence that Theorem 7(11) is valid for an ARIMA(O,-I/2 , 0) process.

-1/2
When p and q are not both zero we define the process {x t } by V x at' so

that Yt - P= ((B)}-I(B)x t . Now {x t} is an ARIMA(0,-1/2,0) process and, as we have

just proved, its mean x = n-1 (x
1 

+ ... + xn ) satisfies n(log x)- 1/2; -> N(0,2w-1o2)

as n * ; while the linear filter {O(B)}-I(B) which transforms xt into Yt - P has

a continuous spectrum which takes the value F (0) at frequency zero. Applying Theorem

-1/2 - 1 2
18.6.4 of Ibragimov and Linnik (1971) we obtain n(log n) (y - 1) Z> N(0,2w- 0 f u(0)),

the required result.

The asymptotic distributions of sample autocovariances and autocorrelations of

ARIMA(p,d,q) processes follow directly from Theorems 2-5. The cases 0 < a <1/2, a - V2

and 1/2 < < I correspond to 1/4 < d < 1/2, d - 1/4 and 0 < d < 1/4 respectively.

When -1/2 4 d 4 0 the asymptotic distributions are Normal with mean zero and covariances

given by (7c) and (21c), i.e. the same as when 0 < d <1/4. The quantities a, A and

X/Y occurring in the expressions for asymptotic variances are, from (31) and Hosking

(1981),

20 f (0 ) ( 1 - 2 d ) ~1 - d
= u r (f (-0d

a1= 1 - 2d, = r(d)r(1 - d) A/y0  IFu(0) r(d)

The expressions (7c) and (21c) can also be simplified for certain processes, as we now

show.

Lemma 3

Let {y ) be the ARIMA(0,d,q) process V d(y - ) 8(B)a with d <1/4 and
t t t

Ea = a4(3 + K) < -. Then as n +
t

cov(ck,ci) n-04 + + KYk(33)

and

k n-I(Y1 / O)2 (p; + * 2PkP 2 *) (34)
cov~rk,rL£ ) n (Y0/y~ k+ 4kP -23-
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where y and p are respectively the lag-k autocovariance and lag-k autocorrelation of

the ARIMA(0,2d,q) process v2d(y t - i) = e(B)bt  with white-noise variance Ebt = 1, and

are given by

k= . Y i Yj'k+i-j Pk uu Y/YO1 -1j=-q j=-q]

where S

q-k+ r(1-4d)r(k+2d) u
k r(2d)r(1-2d)r(k+1-2d) ' k = . eiei+k=-a

are the lag-k autocovariances of the ARIMA(0,2d,0) process V2dyt = bt  and the MA(q) S

process yt = B(B)b t  respectively.

Proof. Let Yx be the lag-k autocovariance of an ARIMA(0,d,0) process with white-noise
k

variance 1. We have (Hosking, 1981)

x r(1-2d)r(k+d)
k r(d)r(1-d)r(k+1-d)

thus

S
S x Y x = r(1-2d) 12 1 r(s+d)r(s+k+d)

s s+k Lr(dr(1.-d) rls+-d)rls+k+l-d)

r(1-2d)r(k+d)r(1-k-d)r(1-4d) + (35)
r(d)r(1-d)r(k+1-2d)r(1-k-2d) = Yk '

where we have used Dougall's formula (Slater, 1966, p. 180) and some manipulations

involving the reflection formula for gamma functions, r(z)r(1-z) = /sin lrz. When

q = wehav Yk= 02 x
q = 0 we have Yk ak and substitution of (35) in (7c) and (21c) yields (33) and

(34). When q * 0 we note that

= 2 U uxY k a o j Yk-j-"""

J=-q

and a similar substitution again yields the results (33) and (34). •

-24-
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7. EXTENSIONS

We consider three possible directions in which the results of Theorems 1-5 may be

extended. Writing Yt - u + E* at-j as in (2), we may attempt to weaken our assumptions

on: (i) the asymptotic form of for large J; (ii) the distribution of the at-

(iii) the dependence structure of the at -

As Rosenblatt (1979) remarks in a similar context, Theorems 1, 3(i) and 5(i) can be

generalized, without any essential change in the proof, to the case in which Y k k'L(k)

where L is a slowly varying function and the normalization naL(n) replaces no. " ]
Theorems 3(iii) and 5(iii) remain true when Yk - k-*L(k), and with the same n1 /2

normalization. A possibility for further research is to consider the extension of Theorems

3 and 5 to seasonal long-memory processes such as the seasonal ARIMA(O,d,O) process

( )dyt - at where s is an integer and 0 ( d (1/2.

The assumption of Normality of (a t } in Theorems 3 and 5 for 0 < a ( 1/2 seems

unnecessarily strict. If {yt) satisfies (2) and (3) with Ea2m  < 6 it does not seem

difficult to show that, in the notation of Theorem 3, EC r + As n - for

r - 1,...,m. This would imply that condition (4d) could be weakened to (4c) without

affecting the validity of Theorems 3 and S. However, since the asymptotic distributions

of ck and rk when 0 < a <1/2 do not involve any higher moments of at than the

variance, one might expect that these limiting distributions could be obtained under no

stronger an assumption on the distribution of at than (4a).

The assumption that the at in (2) are independent can be relaxed in certain

circumstances, notably in Theorems 2-5 when 1/2< a < I (Hannan and Heyde 1972, Hannan

1976). Similar extensions may be entertained for our other results and their

generalizations suggested in this section.
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APPENDIX. PROOF OF THEOREM 18.6.5 OF IBRAGIMOV AND LINNIK (1971).

Theorem 18.6.5 of Ibragimov and Linnik (1971, p. 359) is as follows. Let (x be a

sequence of independent, identically distributed random variables with EX0 - 0, EX0 < ,

and let

Yj =k ck-j

where

If a2 = EY + + Y 2 as n + a, thenn 1 n

pr((Y1 + . + Y1)/Y) z 
1/

2 f exp(- I U
2
)du

The first stage of Ibraqimov and Linnik's proof is to let ck,n = Ck_1 + ... + ck n

so that

2 2
an Ckn

and show that c.~n/O n  tends to zero uniformly in k as n + -. It is this part of thec.. n/-n

proof which is in error: equations (18.6.14)-(18.6.16) are all incorrect. A correct proof

runs as follows.

We have cj,n - cj_1,n - cj_. - Cj-n.1, go S

2 = c. 22

c 2 C 2c + 2(c c )c 2c (A.1)
j,n - cj-n I  J 2 -( 1  Cj-n-1 j-1,n + cj-1,n

Applying (A.1) k times we have

2 !2  + 2
cj,n (CJi-1  CiJ-in-1 I - Cj.i.nI)cj.i.1.,n cj.k,n

2 2
(ci - i-n + 2 ( ci  in + cj-k,n

-26-
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C(4 1 c2 211 (ci - ~ 2 1 c 2 11/2 + C
• " n i,n J-kn

e. c2 + 80 a c2)
1 /2 + C2

where the last two steps are both applications of Cauchy's inequality. Thus

2

2 2 2

In (A.2) we may choose k so that c 2_n/0n  is arbitrarily small, and this yields

Ic~I/o ' ,~ [ol{ ~ c2)1 /2 + 1 -1 2 c] 1 /2 (A3Ic 1n/o 4 a - [so-,(( cin + (A.3)--

in which a n + 0 as n + -. Equations (A.1), (A.2) and (A.3) are the corrected versions

of Ibragimov and Linnik's (18.6.15), (18.6.16) and (18.6.14).

Now defining ak,n - ck,n/a n  (not akn - ck,n  as stated by Ibragimov and Linnik),

the remainder of Ibragimov and Linnik's proof may be followed to obtain the final result.

S
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